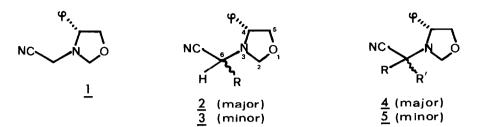
ASYMMETRIC SYNTHESIS IV^1 . PREPARATION OF CHIRAL α -AMINONITRILES FROM A NEW N-CYANOMETHYL-1,3-OXAZOLIDINE SYNTHON

José L. Marco, Jacques Royer and Henri-Philippe Husson*

Institut de Chimie des Substances Naturelles du CNRS, 91190 Gif-sur-Yvette (France)

Abstract :

The synthesis of (-)-N-cyanomethyl-4-phenyl-1,3-oxazolidine 1 is reported. Good yields $and moderate diastereomeric excesses (d.e.s.) of mono- and di-substituted <math>\alpha$ -aminonitriles were obtained from this simple chiral template.


The preparation of optically active amines, aminoalcohols and aminoacids, because of their potential biological properties, is an important problem in synthetic chemistry. α -Aminonitriles^{2a} are attractive starting materials for these syntheses if one considers that they include three reactive centers. Although the anions of N-dialkylaminoacetonitriles have been used, they have mainly been considered as masked acyl fonctions and not for preparing α -substituted aminonitriles^{2b}. Thus chiral α -mono substituted aminonitriles, which are key intermediates in the preparation of aminoacids have been synthesized from aldehydes or related derivatives³.

We now report the synthesis of an unsubstituted α -aminonitrile <u>1</u> bearing a 1,3-oxazolidine chiral moiety⁴ and our first results concerning the diastereoselective monoand di-substitution at the α -position of the cyano group. Among the desirable structural features of this new synthon is the facile deprotection of the primary amine fonction.

The condensation of (-) phenylglycinol with formaldehyde in the presence of KCN led, in a "one-pot reaction", to the formation of 1^5 (fig. 1) as an oil, ([α]²⁰-173° (CHCl₃, <u>c</u> 1.4)) in 94% yield.

The substitution of the anion derived from 1 can in principle lead to a large variety of optically active α -aminonitriles that would be otherwise difficult or impossible to prepare using alternative methods. It turned out that such a reaction is possible and alkylation of the anion of 1 with a series of alkyl halides (methyl iodide, ethyl, propyl, benzyl and allyl bromides) afforded compounds 2 and $3^{6,7,8}$ (Table 1). The diastereomers 2 a-e (major) and 3 a-e (minor) have been easily separated in their pure form by flash chromatography.

Diastereomeric excesses (d.e.s.) were determined in the crude mixtures of the aminonitriles by integration of the methylene protons N-CH₂-O in the ¹H NMR spectra (200 MHz) : $\underline{2} \& 4.45$ and 4.85ppm (J_{AB} = 2.5 Hz) ; $\underline{3} \& 4.55$ and 4.70ppm (J_{AB} = 4.5 Hz). Tentative assignment of the absolute configuration at the new chiral center was made by observation of a downfield position for the methine H-6 of the major isomer 2 (Table 1)

		-							
				[a] ²⁰ _D (c,CHCl ₃)		δ H−6(ppm)			
	R	yield [*]	d.e.	<u>2</u>	<u>3</u>	<u>2</u> (S)	<u>3</u> (R)		
		(%)	(%)						
a	CH ₃	55	38	-282°(2.4)	-141°(0.35)	3.71	3.91		
b	сн ₂ сн ₃	60	50	-221°(3.1)	-142°(0.48)	3.49	3.67		
с	сн ₂ сн ₂ сн ₃	65	62	-370°(1.7)	-246°(0.28)	3.60	3.75		
d	CH2CH=CH2	51	44	-244°(1.8)	-167°(0.54)	3.61	3.81		
е	CH ₂ Ph	65	68	-155°(1.5)	-154°(1.9)	3.87	3.98		

Table I : alkylation of 1 with alkyl halides R-X

	R	R'	yield [*]	d.e.	absolute conf.	δ СН ₃	(ppm)
			(%)	(%)	of major <u>4</u>	<u>4</u>	<u>5</u>
a	сн ₃	сн ₂ сн ₃	70	64	S	1.23	1.46
b	сн ₂ сн ₃	сн ₃	68	36	R	1.46	1.23
с	сн ₃	CH2Ph	73	52	S	1.08	1.34
đ	CH ₂ Ph	CH ₃	68	40	S	1.08	1.34
е	сн ₃	CH2-CH3	72	50	S	1.11	1.34
		Оснз					

Table II : alkylation of 2 and 3 with alkyl halides R'-X

* pure isolated products ; overall yield.

as previously observed for the S isomer in the series of α -aminonitriles derived from (S)- α -methylbenzylamine^{3a}. Additionnal support for the S absolute configuration of 2 was obtained by transformation of the mixture of diastereomers 2b and 3b (d.e. 50%) into (-)-(S)- α -aminobutyric acid ([α]²⁰_D - 7.5° (c 2, HCI 5N), lit [α]²⁰_D - 20.4° (c 2, HCI 5N)⁹) by acid hydrolysis and hydrogenolysis¹⁰.

Di-alkylated products $\frac{4}{2}$ a-e and $\frac{5}{2}$ a-e were easily prepared by metalation of the diastereomeric mixtures $\frac{2}{2}$ and $\frac{3}{2}$ a,b or e and reaction with alkyl halides (Table 2). The d.e.s. were measured by integration of the cleanly separated CH₃ signals in the ¹H NMR spectra of the crude mixtures. In these cases no separation of the diastereomers could be achieved. The absolute configurations for the major isomers $\frac{4c}{4c}$ and $\frac{4e}{4}$ were assigned as S by comparison of the δ CH₃ signals of the major and minor isomers with the reported values for analogous α -aminonitriles derived from (S)- α -methylbenzylamine¹¹. For compound $\frac{4a}{4}$ we propose using the above argument the S absolute configuration. This assignement was confirmed by transformation of a mixture of derivatives $\frac{4a}{4}$ and $\frac{5a}{20}$ (d.e. 64%) into (+)-S-isovaline $\left[\left[\alpha \right]_{D}^{20} + 4.4^{\circ} (c \ 0.49, H_2O), \text{ lit. } \left[\alpha \right]_{D}^{20} + 11.9^{\circ} (c \ 0.78, H_2O)^{12} \right]$.

As expected a reverse introduction of the substituents changed the absolute configuration of the major isomer (4b vs 4a). Surprisingly for 4c and 4d the major stereomer S was always formed.

A working model, in agreement with the observed results, is that the more stable conformation – owing to minimal non-bonded repulsions – of the deprotonated α -aminonitriles 2^8 (fig. 2) reacts with the alkylating agents from the less hindered face. When R = H, CH₃ or C₂H₅, the C1 conformer is more stable and the preferential attack of

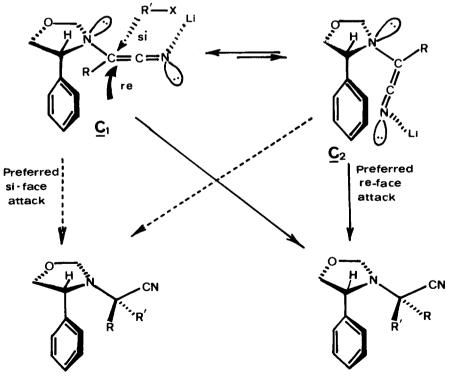


Fig. 2

the electrophilic species from the less hindered si-face leads to the major products $\underline{2}$ (having the S configuration) and $\underline{4}$, whereas the C2 conformer is preferred when R = CH₂Ph due to steric interaction between the phenyl group and the large R benzyl substituent. So the major S diastereomer $\underline{4d}$ is obtained from both $\underline{2a}$ and $\underline{2e}$.

Efforts are presently being made to complete the development of the chiral cyanomethyloxazolidine <u>1</u> as a general synthon for the preparation of various chiral aminoacids, aminoalcohols, amines, etc.

<u>Acknowledgments</u>: We thank Pr. K. Koga (Faculty of Pharmaceutical Sciences, Tokyo) and Océ-Andeno Company (The Netherlands) for generous gifts of D(-)phenylglycine.

REFERENCES AND NOTES

- 1 For Part III see J. Royer and H.-P. Husson, Tetrahedron Lett., 1985, 26, 1515.
- 2 a) J.D. Albright, <u>Tetrahedron</u>, 1983, <u>39</u>, 3207 ; b) G. Stork, A.A. Ozorio and A.Y.W. Leong, Tetrahedron Lett., 1978, 5175.
- 3 Chiral α -aminonitriles have been synthesized by : a) Strecker type reactions (D.S. Stout, L.A. Black and W.L. Matier, J. Org. Chem., 1983, 48, 5369 and references herein cited) ; b) Cyanosilylation of Schiff bases (I. Ojima and S.I. Inaba, Chem. Lett., 1975, 737) ; and c) Amination of α -silyloxynitriles (K. Mai and G. Patil, Synthetic Commun., 1984, 14, 1299).
- 4 A chiral 1,4-dihydropyridine equivalent conceptually analogous to 1 is being studied in our laboratory : L. Guerrier, J. Royer, D.S. Grierson and H.-P. Husson, <u>J. Am.</u> <u>Chem. Soc</u>., 1983, <u>105</u>, 7754.
- ⁵ Preparation of 1 : to a stirred solution of (-) phenylglycinol (23.62g, 0.16 mol), KCN (10.4g, 0.16 mol) in water (650mL) at pH ~ 3 (citric acid) was added over 30 min at r.t. a solution of formaldehyde (40%, 260mL). The reaction mixture was stirred for an additionnal 30 min, then basified (Na₂CO₃) and extracted (CH₂Cl₂). The combined organic fractions were washed with water, dried (Na₂SO₄) and concentrated to give a yellow oil which was purified by flash chromatography (SiO₂, hexane-AcOEt, 80-20). 1 was obtained as a colorless oil (31.15 g; 94% yield).
- 6 All new compounds showed satisfactory analytical and spectroscopic data.
- 7 In a typical experiment, to a stirred solution of LDA/HMPA (1/1 ; 1.1 eq. 0.48M in THF) at -78°, was added 1 (1 eq., 0.66M in THF) via seringe over 5 min ; after 15 min 1.1 eq. of R-X was added. The reaction mixture was stirred for 1 h, quenched by $NH_{\mu}CI$ then extracted with ether, dried and concentrated to dryness. Flash chromatography of the residual oil (SiO₂, hexane-ACOEt, 85-15) yielded the separated isomers 2 and 3.
- 8 The alkylation reaction likely occured under kinetic control since using only 0.9 eq. of LDA instead of 1.1 eq. quite similar d.e. were obtained (32 vs 38%; table l, a).
- 9 K. Harada and T. Okawara, Bull. Chem. Soc. Japan, 1973, 46, 191.
- 10 A range of 22-58% of e.e. was usually obtained in Strecker type aminoacid synthesis without fractionation : a) K. Harada and T. Okawara, J. Org. Chem., 1973, <u>38</u>, 707 b) J.C. Fiaud and A. Horeau, Tetrahedron Lett., 1972, <u>2565</u>.
- 11 K. Weinges, K. Gries, B. Stemmle and W. Schrank, Chem. Ber., 1977, 110, 2098.
- 12 S. Yamada and K. Achiwa, Chem. Pharm. Bull., 1964, 12, 1525.

(Received in France 16 May 1985)